Marko Horb

Marko Horb
Senior Scientist

Rowe 413
Lab: Rowe 423-425
Phone: 508-289-7627
Fax: 508-289-7599
E-Mail: mhorb@mbl.edu

Marine Biological Laboratory
7 MBLStreet
Woods Hole, MA 02543

The Horb lab is focused on identifying the signaling networks leading to the specification of the various pancreas lineages. In particular we seek to define the lineage map of how each individual cell type is specified. We recently completed a microarray analysis identifying downstream targets of the pancreatic endocrine transcription factor Ngn3. We showed that it is possible to promote specific endocrine lineages over other. Specifically we showed that short activation of Ngn3 is sufficient to promote beta and delta cell lineages over alpha cell lineages. We have now identified several factors specific to one lineage over another and are now examining their function. Separate from this we identified a new function for the RNA binding protein Staufen2 in early patterning of the anterior endoderm.

Please feel free to contact us if you have any questions about our research projects.

Links:
National Xenopus Resource Center

Staff

Hitoshi Yoshida, Ph.D.
Postdoctoral Scientist
Rowe 423
7 MBLStreet
Woods Hole, MA 02543
hyoshida@mbl.edu
508-289-7370

Kelsey Coppenrath
Research Assistant lI
Rowe 423
7 MBLStreet
Woods Hole, MA 02543
kcoppenrath@mbl.edu
508-289-7370

Sarah Burton
Research Assistant l
Rowe 423
7 MBLStreet
Woods Hole, MA 02543
sburton@mbl.edu
508-289-7370

Zoë Reynolds
Research Assistant l
Rowe 423
7 MBLStreet
Woods Hole, MA 02543
zreynolds@mbl.edu
508-289-7370

Select Publications

Delay, B.D., Corkins, M.E., Hanania, H.L., Salanga, M., Deng, J.M., Sudou, N., Taira, M.,Horb, M.E.and Miller, R.K. (2018). Tissue-specific gene inactivation inXenopus laevis: knockout of lhx1 in the kidney with CRISPR/Cas9.Genetics208, 673-686.

Corkins, M.E., Hanania, H.L., Krneta-Stankic, V., DeLay, B.D., Pearl, E.J., Lee, M., Ji, H., Davidson, A.J.,Horb, M.E.and Miller, R.K. (2018) TransgenicXenopus laevisline for in vivo labeling of nephrons within the kidney.Genes9, 197.

Tandon, P., Conlon, F., Furlow, D. andHorb, M.E.(2017). Expanding the genetic toolkit in Xenopus: approaches and opportunities for human disease modeling. Developmental Biology (in press).

Pearl E, Morrow S, Noble A, Lerebours A, Horb M, Guille M. (2017) An optimized method for cryogenic storage of Xenopus sperm to maximise the effectiveness of research using genetically altered frogs. Theriogenology. 92, 149-155.

Savova V, Pearl EJ, Boke E, Nag A, Adzhubei I,Horb M.E., Peshkin L. (2017) Transcriptomic insights into genetic diversity of protein-coding genes in X. laevis. Dev Biol. 424, 181-188.

Webb, B.D., Metikala, S., Wheeler, P.G., Sherpa, M.D., Houten, S.M.,Horb, M.E.and Schadt, E.E. (2017). Heterozygous pathogenic variant in Dact1 causes an autosomal dominant syndrome with features overlapping Townes-Brocks syndrome. Human Mutation 38, 373-377.

Wlizla, M., Falco, R., Parlow, A.F. andHorb, M.E.(2017). Luteinizing Hormone is an effective replacement for hCG to induce ovulation in Xenopus. Developmental Biology426, 442-448.

Ratzan, W., Falco, R., Salanga, C., Salanga, M. andHorb, M.E.(2017). Rapid generation of a Xenopus laevis F1 albino J strain by TALENs and oocyte host transfer. Developmental 426, 188-193.

Peshkin, L., Wühr, M., Pearl, E., Haas, W., Freeman, R.M. Jr., Gerhart, J., Klein, A.,Horb, M., Gygi, S., Kirschner, M. (2015). On the Relationship of Protein and mRNA in Vertebrate Embryonic Development. Developmental Cell, 35(3), 383-394.

Salanga, M. C., &Horb, M. E.(2015). Xenopus as a Model for GI/Pancreas Disease. Current Pathobiology Reports, 3(2), 137–145.

Wuhr, M., Freeman, R.M. Jr., Presler, M.,Horb, M.E., Peshkin, L., Gygi, S.P., Kirschner, M.W. (2014) Deep proteomics of the Xenopus laevis egg using an mRNA-derived reference database. Current Biology 24: 1467-1475.

Bilogan, C.K., andHorb, M.E.(2012) Xenopus staufen2 is required for anterior endodermal organ formation. Genesis 50: 251-259.

Bilogan, C.K. andHorb, M.E. (2012) Microarray analysis of Xenopus endoderm expressing Ptf1a. Genesis Jul 20, ePub.

Pearl, E.J., Grainger, R.M., Guille, M.,Horb, M.E.(2012) Development of Xenopus resource centers: the National Xenopus Resource and the European Xenopus Resource Center. Genesis 50, 155-163.

Oropez, D. andHorb, M.E.(2012) Transient expression of Ngn3 in Xenopus endoderm promotes early and ectopic development of pancreatic beta and delta cells. Genesis 50, 271-285.

Pearl, E.J., Jarikji, Z.,Horb, M.E.(2011) Functional analysis of Rfx6 and mutant variants associated with neonatal diabetes. Dev. Biol. 351, 135-145.

Horb, L.D. andHorb, M.E.(2010) BrunoL1 regulates endoderm proliferation through translational enhancement of cyclin A2 mRNA. Dev. Biol. 345, 156-169.

Horb, L.D., Jarkji, Z.H.,Horb, M.E.(2009) Xenopus insm1 is essential for gastrointestinal and pancreatic endocrine cell development. Dev. Dyn. 238, 2505-2510.

Jarikji, Z., Horb, L.D., Shariff, F., Mandato, C.A., Cho, K.W.,Horb, M.E.(2009) The tetraspanin Tm4sf3 is localized to the ventral pancreas and regulates fusion of the dorsal and ventral pancreatic buds. Development 136, 1791-1800.

Pearl, E.J., Bilogan, C.K., Mukhi, S., Brown, D.D.,Horb, M.E.(2009) Xenopus pancreas development. Dev. Dyn. 238, 1271-1286.

Jarikji, Z.H., Vanamala, S., Beck, C.W., Wright, C.V., Leach, S.D.,Horb, M.E.(2007) Differential ability of Ptf1a and Ptf1a-VP16 to convert stomach, duodenum and liver to pancreas. Dev. Bio. 304, 786-799.

Li, W.C.,Horb, M.E., Tosh, D., Slack, J.M. (2005) In vitro transdifferentiation of hepatoma cells into functional pancreatic cells. Mech. Dev. 122, 835-847.

Horb, M.E., Shen, C.N., Tosh, D., Slack, J.M. (2003) Experimental conversion of liver to pancreas. Curr. Biol. 13, 105-115.

Shen, C.N.,Horb, M.E., Slack, J.M., Tosh, D. (2003) Transdifferentiation of pancreas to liver. Mech. Dev. 120, 107-116.

Horb, M.E.and Slack, J.M. (2002) Expression of amylase and other pancreatic genes in Xenopus. Mech. Dev. 113, 153-157.

Horb, M.E., Slack, J.M. (2001) Endoderm specification and differentiation in Xenopus embryos. Dev. Bio. 236, 330-343.